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I. INTRODUCTION

In recent years laser radar (iidar) systems have developed into useful

tools for remote monitoring of the earth's atmosphere. Satellite-borne

lidar systems provide the attractive feature of wide coverage and in some

cases may be the only practical means of probing the upper atmosphere.

The quality of lidar data depends of course on the system noise characteristics.

The receiver output will be contaminated by the usual background and shot

.noise components and in some cases by speckle noise. In certain situatiois 	 4

speckle noise dominates and can seriously limit system performance.

Laser speckle has been studied extensively. Goodman  published one

of the earliest papers describing speckle effects on optical radar

performance and recently an entire issue of the Journal of the Optical

Society  was devoted to speckle. In this report we develop and summarize

the equations which relate the statistics of the speckle noise at the

receiver output to the lidar system parameters. Ibrtunately, we were

able to adapt much of the existing theory to the satellite-based lidar

problem. Much of the material was obtained from the books Laser Speckle

and Related Phenomend edited by J. C. Dainty  and Statistical Properties of

Scattered Light by Crosignani, Di Porto and Bertolotti 4 and from the

November 1976 special issue of JOSH on speckle.

The lidar system model is described in Section II, and in Section III

the statistics of the signal and noise at the receiver output are derived.

Scattering media effects are discussed in Sections IV and V. Polarization

and atmospheric turbulence are considered in Sections VI and VII. And

finally, in Section VIII, the major equations are summarized and evaluated

for some typical system parameters.
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II. SYSTEM MODEL

A typical satellite-based lidar system is illustrated in Figure 1. The

transmitting telescope is used to project an image of the optical source

onto the scattering medium. In most cases the source would be a narrowband

laser. However, since speckle noise is significantly influenced by source

temporal coherence, we will assume only that the source coherence bandwidth

is a small percentage of the center wavelength. Although a major portion of

the propagation path will be in free space, in the lower atmosphere turbu-

lence effects could become important and will be considered. The scattering

I
medium could be a rough surface such as the earth or an ensemble of

scattering centers such as aerosols (clouds) and air molecules.

The receiving telescope model is illustrated in Figure 2. The spatial

filter following the objective lens is normally a field-of-view (FOV) stop

which is used to reject background radiation. After the field stop the

optical signal is collimated, passed through an interference filter and then

focused oi:..o a photodetector. Finally, the signal from the photodetector

is passed through an electrical filter to further limit the system

bandwidth.

The problem we are concerned with is the detestability of the scattered

signal. The receiver output will be contaminated by the usual background and

shot noise components and in some cases by speckle noise. In certain

situations speckle noise dominates and can seriously limit system performance.

In the following sections we will present the equations which relate the

statistics of the photodetector output to the lidar system parameters and the

characteristics of the scattering medium.

2
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III. STATISTICS OF THE RECEIVED SIGNAL

The signal statistics at the receiver output can be deduced from the

statistics of the optical radiation incident on the receiver aperture. Let

u(r,z,t) be the analytic signal representation for a single polarization

component of the electrical field. For a quasi-monochromatic field u takes

the form

u(r,z,t) = IA(r,z,t)le
i6 

e
iw 

c
t
	(1)

where © is the phase and w
c 

is the center frequency. For the moment we will

assume the scattering medium is diffuse so that the received field consists

of a large number of randomly phased contributions arising from different

scattering centers. ^f the scatterers are randomly distributed over distances

which are large compared to the optical wavelength, the scattered signal will

be incoherent. Under these conditions A is Gaussian distributed while the

intensity obeys negative exponential statistics 

9

	1(r,z,t) = JAI 
	

(2)

	p(I) = <I> exp(- <I>> )	 (3)	
i

where <I> is the average intensity.

The scattering conditions can be relaxed to include the cases where the

i

	 surface is not rough compared to A and where the scattered field contains a

coherent specular component. These situations are discussed in Section IV.

To calculate the signal statistics at the receiver output,it will be

r	

necessary to evaluate the mean and covariance function of the intensity

F	 fluctuations

4



C T (r i0 t I1-29 t 29 z) - <I(r i ,z,t l )I(r 2 ,z,t 2 ) > - <I(rl,z,t1)> <I(r2'z,t^)> .

(4)

Since the field A is a circular complex Gaussian random variable, the

covariance function can be expressed in terms of the mutual intensity of

the field'

CI 
= I<A(rl,z,t1)p (r2.z,t2)>I^ = IJA(rl'tl'r2't2'z)I2 	

(5)

The mutual intensity function depends on the characteristics of the

spattering medium and the incident optical signal. In Sections IV and V

•	 we shoe that for most casts of interest it can be assumed that A is spatially

homogeneous in the transverse direction. The temporal dependence of A arises

from a number of factors. Movement of the scattering centers with respect

to the receiving telescope caused by Brownian motion, turbulence, wind, or

spacecraft motion will introduce temporal fluctuations. Those effects are

generally stationary. However, if the optical source is pulsed and the

density of scatterers varies with distance (z), the average value of the

received intensity will change with time. Phis effect can be included in

our analysis by writing the mutual intensity function in the following form

(see Section V)

	

i A (r l ,t l ,r 2 ,t 2 ,z) = D(t l9 t 2 0A (r I - r 2 ,t l - t 2)	 (6)

D(t i ,t 2 ) is given by

	

D(t l ,t 2 ) = f dzP(t l - z )P(t 2 - Zz) Z	 (7)
U

E	 where P is the incident pulse shape and p is the number density of scatterers.

If the scattering medium is a rough surface, p is a Dirac delta function and

5
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D(t l ,t2 ) becomes

s2

	

D(t l ,t 2 ) = P(t l - cz ) P(t ') - 2z ) 2	 (8)
z

where B r is the surface reflectivity. Using Equations (6) and (7), the

intensity covariance function can be written as

	

C I = D2 (t 19 t 2 JA (r I - r 2 , t  - t2)I2
	

(9)

I
The average intensity is obtained by simply evaluating the mutual intensity

1
	 function at the point r  = r2 and t i = t2

<I> = D(t,t)JA (0,0)	 (10)

We assume the receiver FOV and interference filter are adjusted to

admit all the scattered signal energy which is incident on the telescope

objective. The total received signal intensity can therefore be written as

I s (t) = fd 2 rW(r - vt)I(r,z,t)/ fd 2 rW(r)	 (11)

where W is an appropriate real and positive aperture weighting function and

v is the transverse spacecraft velocity. W is dimensionless. Note for a

point detector lJ is just a Dirac delta function.

Two types of receiver sf.ructures will be considered. The analog

receiver is applicable to strong signal conditions where h(t) is a low-pass

filter (see Figure 2). Mien the signal is weak, h is an integrator whose

output is proportional to the number of detected photons. In both cases the

noise at the receiver output will depend oil 	 statistics of I .S

6



The mean and variance of the signal at the receiver output can be

•	 calculated using; Campbell's theorem 

E[s(t)) - a<I s (t) > * 1i(t)	 (12)

Var[s(t)] = a <I s (t)> *h 2 (t)

m

+ a2 J d T I f dT 2 C 1 (-[ 19 7 2 )h(t - T 1 )h(t - T 2 )	 (13)
s

There a is a constant which depends on the 2hotodetector efficiency and C1
s

is the temporal covariance function of the received signal.

The variance of S can be regarded as the signal induced noise. The

first term in (13) is the quantum or shot noise component arising from the

random emission of photoelectrons by the detector. The second term arises

from the speckle induced fluctuations in Is.

The average value of I s is calculated from (I1) using (10)

<I s (t)> = D(t,t)^A(0,0)	 (14)

The temporal covariance of i s can be written to terms of ^ and I)

1	 C1 (t l ,t 2 ) = D` (t l ,t 2 ) J d 2 rj^ (r+ VT,T)I z Rw (r)	 (151
S	

_	 _	 _

i
T = t  - t2

R is the autocorrelation function associated with the receiver
w

i

aperture weighting function

4

6

R14 (r)

The average

into (12) and usi

E[S(c)J

jd2 rW ( p ) W*( p + r)	 (16)

value of SW can now be evaluated by substituting; (14)

ng (7)

00

= aJA(0,0,•r.) f dzP 2 (t - Z)*h(t) p-(2)	 (17)
o	 Z

--	 is
-db	 n



This expression can be further simplified by assuming the transmitter pulse

width and receiver bandwidth are chosen so that the small scale structure

in p(z) can be resolved. In this case p(z)/z 2 is approximately constant

over the important range of integration in (17). By choosing the time

reference so that P and h peak at t - 0 we have

E[S(t)] = cl^ (0,0,z) p(ct/2' f dzP 2 (t - 2z )*h(t)	 (18)
`	 0	 c

Under the same conditions the expression for the variance becomes

Var[s(t)] = a1 (O,o,z) ^t/2) f dzP 2 (t - 2z)*,,2(t)
A	

(ct/2)2	 0	 c

+ a	 4	 4 fd r j dTIJA (r + vT,T) I R 2 (T)Rh (T)Rw (r)	 (19)
(et/2)

where
^	 m

Rp 0) = f dtP(t)P(t + T)

W

R1i (T) = f dTh(L)h(t + T)
_m

R and % are the autocorrelation functions associated with Lhe transmitted
p

pulse shape and impulse response of the receiver filter.

It is instructive to consider the physical implications of (19). If

the receiver employs a point detector of infinite bandwidth, both R  and

R 1 are Dirac delta functions, in which case the second term in (19) reduces

to the square of the average intensity. For a finite aperture and finite

bandwidth receiver, R w and R 
1 

are rather broad functions of r and T with
r

ti
peak values at r = T = 0. Since JA and R

p 
are also maximum when their

arguments are zero, ( 19) will be less than the average Intensity when a

finite aperture and finite bandwidth receiver is used. In this case the

receiver spatially and temporally averages the intensity fluctuations. The

averaging will depend ;pon the relationship between the spatial and temporal

8



coherence lengths of the received signal and the receiver aperture size

and bandwidth. The averaging will also depend upon the transmitted pulse

length through the R2 factor in (19). At any given time t, the signal

energy incident on the receiver aperture arises from an illuminated

scattering volume whole thickness is determined by the transmitter pulse

length. The scattered signals arising from each of the illuminated

scattering centers add on an amplitude basis. Consequently, the spatial

statistics of the intensity are unaffected by the pulse length (aside from

a possible scaling factor). However, since the signals mattered by different

centers are uncorrelated, the received intensities at two difiLrent times

will be partiall correlated only if the corresponding scattering volumes

have some points in common. Overlapping will occur only if the time

difference is smaller than the transmitted pulse length. The intensities

will be uncorrelated if the time difference is larger than the pulse length.

The temporal statistics are also affected by the source coherence, random

motion of the scattering centers and spacecraft motion. These effects

appear in the 
^A 

factor in (19). The spatial statistics are determined by

the ► ra n smitter beam divergence, characteristics of the scattering medium

and propagation t - fects such as turbulence. These factors are discussed in

more detail in Sections IV and V.

The relative importance of spatial and temporal coherence length, pulse

length, aperture size and receiving bandwidth can be determined by evaluating

(18) and (19) for the idealized case where all the functions are Gaussian

ti	 2r2 _ t2
IJA (r,t)!^ - !J A (0,0)I	 exp(- 

2v 2 	 t	 )	
(20)

	

C	 c

2
P(t) - exp ( — -2 	 (Z1)

2 T

P

9



h(t) = exp(-t2B2)
	

(22)

2

	

W(r) - exp(- r2)
	

(23)
R

where

P c = transverse spatial coherence length of signal

T c - temporal coherenc f, length of signal

t
P 

= transmitter pulse length

B = detector bandwidth

K = receiver Lperture radius.

Using (20) through (23) in (11), (18) and (19) gives

1'.[S(t	 (0, 0) P (ct /2) ItcIP_	 (24)
A	

(ct/2)2 2B

2
Var[S(t)] = E S) + F(' ^ 	 (25)

F MS"T

where

2
MS I +K

2
P
C

i

M =
	 1	 1	 v`	

(21)T	 1 + B2 T2	
+ B2T2 + 

B2(R2 + 

P2)
C	 p	 c

The equations are valid for scattering by tenuous med.,i such as low

density aerosol distributions and air molecules. For rough surface

scattering the

P(ct/2)

(ct/2)2

factor must be replaced by

(26)

B2r
2

10
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i ► (24) and T p set equal to infinity in the expression for MT.

The average signal. varies with time in proportion to the density of

scatterers. The (ct/2) -2 factor .accounts for decav in signal strength as

the distance between the spacecraft and illuminated scattering region

increases with time. The first term in the variance expression is the 	 I
shot noise component. It is proportional to the mean signal. The speckle

noise component is proportional to the square of the mean signal and

inversely proportional to MS P1T , the effective number of received cor-

relation cells. M S is the effective number of spatial correlation cells

averaged by the receiver aperture while MT is the effective number of

temporal correlation cells.

To reduce speckle noise we would like to make M S and 'IT as large as

possible. The parameters R, B and 4 are generally inflexible. The

aperture size k is constrained by weight limitations and the physical

construction of the spacecraft. The detector bandwidth B is determined by

the required range resolution. And of course the spacecraft velocity is a

function of the orbit. Thus the only parameters which may be adjusted are

o	 T and Tp.
c	 c

The coherence time of the scattered radiation depends on the scattering

medium and source coherence. If the scattering medium is a rough surface

then T  is exactly equal to the source coherence time. If the scattering

mechanism is resonant absorption and reradiation, then T c is equal to the

inverse Doppler line width. For air molecules dominated by Brownian motion,

is on _;ie order of 1 ns. If Rayleigh scattering from air molecules or

aerosol and particulate scattering is involved, then r
c	

(T -
d 
2 + T-

2)-1/2
c

where T sc is the source coherence time and 1/[ d is the Doppler line width.

I  is on the order of 1 ns for air molecules governed b y Brownian motion and

11



1 ms for aerosols or particles embedded in n *-^rbulent flow (e.g., clouds

and smoke plumes). Therefore, except for resonant scattering, 
T  

can be

controlled by varying the source coherence time.

M.r can also be increased by reducing the source pulse length T
P

. But,

there is a practical limit to the reduction. To keep the per pulse signal

energy constant, the peak intensity must be increased as z p is decreased.

However, when resonant scattering is involved, the peal: energy density in

the scattering medium must be maintained below saturation levels. This

problem is most important when the density of scatterers is low.

In the absence of strong turbulence effects p c is a function of the

size of the illuminated spot on the scattering medium and the distance

from the scatterers to the receiver. If the whole transmitted beam illumi-

nates the s	 tering medium we have (see Section IV)

pc 6 
_ A
	

(2H)

where A is the wavelength and e  is the transmitter divergence angle. If

the transmitter is operating at the diffraction limited divergence,then

eT R_
	 (29)

where RT is the transmitter aperture radius. Usually the transmitter and

receiver apertures are nearly equal in size. Thus M S = 2 for diffraction

limited operation. The transmitter divergence normally will be much larger

than the diffraction limited value to minimize pointing and tracking problems.

If the transmitter divergence is increased, the receiver FOV must also be

increased so that the receiving telescope sees all of the illuminated

scattering volume. Unfortunately, background noise power increaser with

FUV. If the background noise results from an extended diffuse source, its

characteristics will be -'.•liar to the scLttered signal since both are

incoherent and Gaussian.

12
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•	 Uniform background noise sources can be described by their spectral.

radiance function, N(f), which is defined as the power radiated at

frequency f per Hertz bandwidth into a unit solid angle per unit of source

area.7 If the source fills the receiver FOV, the effective average noise

intensity incident on the receiver aperture is

<In(r,z,t)> = J n (0,0) = N(f)B 10 r 	(30)

J 11 is she noise mutual intensity function, B I is the bandwidth of the

receiver's interference filter and 11 r is the solid angle FOV of the receiver.

Because Q  is matched to the transmitter divergence and may change, it is

convenient to normalize In with respect to a standard FOV such as the

diffraction limited value.

RAT 2

< I n > = Jnd
â 

(0 1 0) (-	 -)

2
Jndk(0,0) = N(f)B 1 (R)	 (31)

JndX is just the effective noise intensity for a diffraction limited FOV.

The mean ind variance of the noise voltage at the receiver output can

easily he calculated if we use the form in (20) for the noise intensity

correlation.

	

RE3 
2	

1/2 RG 2

E(11(t)J = E(n dk)( XT ) = aJndQ(0,0) B
	

( —^  )	 (32)

E(n ) FE3 2	 E(n ) 2 R© 

T 

4
Varin(t)J =	

32k

	
( ^	

+ NSNd â,	
( 

A
)	 (33)

where

R©T 2

	

N S = I + (	 )	 (34)

13



B 2 	 2	 1/2

	N = 1+ I + 2	 v	 (35)

T_J

The spatial coherence length of the background noise is determined by the

receiver FOV and is equal to a/6 T . The temporal coherence length is

determined by the interference filter bandwidth and is equal to 1/B I.

Background noise contaminates the receiver output by adding a DC com-

ponent and introducing additional shot noise and speckle noise. Normally

the speckle noise component will be small since the interference filter

bandwidth is usually much larger than the detector bandwidth. For example,

!	 the bandwidth of a 1 X interference filter centered at 530 rim is nearly

100 GHz compared to detector bandwidths of 1 GHz or less. Thus N T is on

the order of 10 2 or larger.

Although signal induced speckle noise will decrease with increasing

8 T , background shot noise and speckle noise will increase. The optimum

transmitter divergence can be determined by minimizing the sum Var(S) +

Var(n) with respect to 6 

1/4	 1

2E(S,/M

	

_ a	 T	 _ (36)
	6T optimum	 R	 !:(ndR) /,T

 + E(ndd2/NT

If the optimum transmitter divergence is used, the total noise power is

1/2
M E(S)	

2E(S) E(n
dd 	E(ndd

	

Var(S) + Var(n) -	 + -	 —	 +

	

v2	
11/2	 2	

NT

112

C(S) 1	
2	

E(ndk)

14
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E(S) and E(ndZ ) may be viewed as the average number of signal and noise

photons detected in a time interval of length 1/B. Usual l y E(n dZ ) will be

very small since it applies to the diffraction limited receiver. In most

cases, therefore, the total noise in (37) is approximately equal to the

signal shot noise. However, it may not be practical to achieve the opti-

mum value in (37), particularly if the transmitter divergence given by

(36) exceeds the angular size of the target.

Although the mean and variance of the signal plus background noise

are useful parameters for accessing the lidar system's performance, a

complete analysis requires knowledge of the signal and noise probability

distributions. The instantaneous intensity evaluated at a single point is

exponentially distributed if the scattered signal and noise are both

	

.	 completely incoherent [see Equation (3)] and the photon counting statistics

	

{	 are Bose--Einstein distributed.
4
 Because the receiver integrates the

I

intensity over space ar:d time, the intensity statistics will be modified.

Goodman has shown that the gamma distribution is a good approximation for

the probabiliLy density of the integrated speckle patterns

m	m 	 m-1	 I
( — ) I exp (-m	 )

p(1) _	
-1	 1>

	

r 
(m)	

(38)	 i

I > 0

where m is equal to M 
S 

M 
T 

for the scattered signal and N S N,F for the background

noise. The photon counting distribution associated with (38) is the

negative binomial distribution. If desired,the exact probability density of

integrated speckle can be calculated by expanding the scattered field in a

5
Karhunen-Loevre series.

The signal statistics derived in tFis section are summarized in

Section VIII where they are evaluated fot some typical system parameters.

15



IV. SCATTERING BY A ROUGH SURFACE

In the previous section it was shown that the speckle noise power

could be calculated from knowledge of the intensity covariance function

of the received signal.

C I = <I(r l ,z,t I ) I(r 2 ,z,t 2 )> - <I(rl,z,tI)><I(r2.z.t2)>	 (39)

If the surface is rough compared to the optical wavelength, the scattered

field is a complex circular Gaussian process. The ma--nitude of the

scattered field is Rayleigh distributed and the intensity is exponentially

distributed.	 In this case the intensity correlation function can be

written in terms of the mutual intensity of the field.5

C I = I<A(r l ,z,t 1 ) A*(r 2 .z.t 2 )>I 2 = jJA (r l .t l .r 2 .t 21 Z)I 2	(40)

If the surface also possesses a specular scattering region which is

too small to be resolved by the receiving telescope, then the scattered

field will contain a coherent component. In this case the intensity

distribution is a modified Rician density.5

1
I	 I + I s	 J`^s

p (I) = <I 
> 

ex
- ^I >
	 10 2 < I	 (41)

r	 r	 r

I > 0

where I r is the random intensity component and I s is a coherent specular

component. 
1  

is a modified Bessel function of the first kind. Mien the

rms fluctuations of the surface roughness are not large compared to the

wavelength, the surface can be decomposed into two identicall y shaped

surfaces which are colocated in space, one of which is very rough :md th.-

1G

X
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other of which is very smooth but with a reduced reflectivity. In this

case the intensity distribution is also a modified Rician density.

The mutual intensity in the observation plane can be written in terms

of the mutual intensity in the scattering plane using the Huygens-Fresnel

principle. If the observation plane is in the Fraunhofer zone, we have

A(r ' z,t) = az eXl ' (-i az r2) J d2pAs (o,t) exp li az p • rl	 (42)

where As is the scattered field directly in front of the scattering plane.

In most cases the scattered field can be approximated by the formulas

As ( p ,t) = brA (P - vt,t) exp i	 2h(p)	 (43)

1	
br is the average sur°acs reflectivity, A i is the complex amplitude of the

incident field, v is ti:e transverse velocity of the spacecraft and h(p) is

the random height distribution of the scattering surface. Equation (43)

is essentially the geometric optics approximation for the scattered field.

It is reasonably accurate provided the surface slopes are small. The

formula implies that the scattered field is reduced in amplitude acid phase

shifted with respect to the incident field. 	 t

The mutual intensity of the scattered field is calculated by assuming

the surface height fluctuations are a zero mean homogeneous Gaussian process

JAs ( C 1 , P 2 . t l , t 2 )	 BrJA1 -1 - vt I' P 2 - vt,,,tl,t2)

exp
	 ^

2

4 Tr
	

[C 11- C 11 ( p l - P 2 )l	 (44)

where J A is the mutual intensity of the incident field and Ch (p) is the

surface height correlation function. The mutual intensity in the observation

17



O

plane can now be calculated using (42) and (44)

2

J (r ,r ,t ,t ,z) = 2r J I d 2 p	 d 2p J	 (P i
	vt ,	 - vt ,t ,t )

Z
A -1 -2 1 2	 ^22	 1	 -1	 2 Ai 1	 - I

p
-2	 - 2 ] 2

\\2

• expo 
^nJ
 [C 11 - C 110 - 0.1)

• expi 
Az 

(P l 	r l - p 2	 r2)	 (45)

Note that in (45) we have neglected some multiplicative phase factors.

These factors do not affect the intensity correlation function [Eq. (40))

because it depends only on the magnitude of JA.

The major contribution to the integral in (45) occurs for p  near p2.

If the receiving telescope is unable to resolve an object in the scattering

plane whose scale size is on the order of the spatial coherence length of

I1 the scattered field, J A may be approximated by 
5

„2

JA (r l ,r 2 ,t l ,t 2 , 7.) =	 2 r 2 J d 2p JA 1P. p_ - v(t l - t`).t1,t7)

	

a z	 i

• expi az p	
(rl - r,,)	 (46)

Now, the incident field amplitude Ai is related to the transmitter

aperture distribution A1,

A i (c ,t) _ ,1z exp 
` i az P^

J 
j d`uA,1,(u,t) exp Ci 

ZZ 
u	 , 

/	
(47)

It is convenient at this point to express A T explicitly in terms of its

temporal and spatial dependence.

:1.(u,t) = Plc - 1z1 "fit - 2z I A,f (u)	 (48)

	

\\	
l	 1	 I
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P is the transmitted pulse shape, T is a random time function which is

related to the source temporal coherence, and AT is the spatial field

distribution in the transmitter aperture. Using ( 48) and ( 47) we have

JAi (P l . p 2 ,t l .t 2 ) = P(t I - ẑl PIt 2 - ^z J CT(tl - t2)

• X272 exp -i Az 1p1	 p2 / 1J d2u d
21	 u 2 A (11 	 AT(u2)

• expi ?i (u l 	p l - u,) • 2 2 )	 (49)

where CT is the source temporal coherence function. Substitu r ing ( 49) into

(46) and integrating over p gives

JA ( r l . r 2 9 t i lt 2' z) = D(tl9t2) JA(r1 - r2
• tl - t

2 )	 (50)

6 2Y t - 2z 
P 't - 2z

D(tl,t2) = r	
1	 c	 2	 c	

(51)

z

a2( 
2	 *	 2n

J ^(r,T) = 4 2 
J 

d _u AT M AT (u - r - VT) exp -i 2z u • vt	 (52)
X z

We will evaluate (52) by assuming the aperture illumination is Gaussian.

This Is a reasonable assumption if the laser is operating in the funda-

mental Gaussian mode and if the transmitting telescope does not obscure the

central region of the beam. The integral in (52) can be simplified by

noting that the magnitude of u can never be greater than the transmitter

aperture radius RT . If RTvT/az << 1, a condition which is usually met, the

exponential in (52) can be neglected. Therefore, if we let

2

AT (u) = AT exp - ", - i f^	 (53)
RT	 T

1

V
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ti
JA becomes

ti	
Ir + vTl 2	 1	 n2RT

J A (r,T) = I ICT (T) exp -	 2	 2 + 2 2	
(54)

R 1'	 f T

where f  is the effective transmitter focal length and I i is the average

incident intensity. It is convenient to write (54) in terms of the

effective transmitter divergence angle.

^r + v i l 2 eZ.
A (r,, ) = IICT(T) e Xp	 -- 2	 9	 (55)

	

L	 A

2	 n2R2. 1/2

	

8T = ( 2̂ 
+ Z.l	 (56)

R 
	 f ,l.

Z
	If the transmitter beam is collimated, f,l,	 and 

6T 
becomes the diffraction

limited value A IR T* The spatial coherence length is defined as

PC = a/© T 	(57)

Notice that the spacecraft velocity effect is doubled because both

the transmitter and receiver are moving. The variance of the received

ti
signal is evaluated by integrating J A (r + vT,T) over the receiver aperture

[see Eqs. (14) and (lb)]. 'file vT paramete r was introduced by the receiver

motion. Transmitter motion introduces the vT parameter in Lq. (55). Thus,

v should be replace by 2v In the analyses in Section III.
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V. SCATTERING BY A RANDOM DISTRIBUTION OF SMALL PARTICLES

Scattering by an ensemble of particles differs from rough surface

scattering because the particles are generally in motion, resulting in a

continually changing scattering medium. The trajectories of molecules

are usually governed by Brownian motion while the motion of material

particles such as aerosols are determined by the surrounding medium.

The book, Statistical Properties of Scattered Light, by Crosignani,

Di Porto and Bertolotti4 gives an excellent treatment of this subject.

the spatial statistics of the scattered field are very similar to

those for rough surface scattering. However, the temporal statistics

are considerably different because of the random particle motion. The

evaluation of the scattered field is greatly simplified by using the

Rayleigh-Gans hypothesis. This hypothesis is similar to the weak

scattering assumption often used in turbulence problems. Physically,

the Rayleigh-Gans h ypothesis implies that the scatterer introduces a

small optical perturbation to the surrounding medium and that each point

of the scatterer sees the incident field practically unperturbed. Under

these conditions the field scattered by the n th particle can be written

in the form
4

Asn = A t (p n - 
vt,t,z) Ril (t) explik • r n	(59)

Ai is the complex amplitude of the incident field, (` n ,z) are the

particle coordinates and k is the optical wavenumber vector. r
n 

is the
-	 -

trajectory of a given point on the particle and R
s 

depends on the rota-

tional motion around rn . When the particle is spherical and r  is the

trajectory of the center of the sphere, R
n 

is constant.

If the observation plane is in the Fraunhofer zone, the field

contribution frum the n th scatterer is given by

?1
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A
An (r,z , t) -	 z exp -i aT r2 + i Az	

r1	 (59)

The total field in the observation plane is calculated by integrating

(summing) (59) over all the illuminated particles. Since particles may

also be distributed along the direction of propagation (z), the integral

must extend over both the longitudinal and transverse dimensions.

°°	 A	 /	
1sn

Mr, t) = f () dz f d2Pn az expl-
 i az r2 + i az pn 	r l	

(60)

Note that the integral notation in (60) is used for convenience. 1n reality

the total field is calculated by summing over all the illuminated scatterers.

Equation (60) can be simplified b y noting that at any given Instant
the transmitting pulse illuminates a relatively small region of the z axis.

Them•fore, thL• phase factor exp -i I r 2 is essentially constant over
Az

the Important range of integration. It can be pulled outside the integral

signs and dropped since we are only interested in the magnitude of JA.

 (	 A

A(r,t) w	 dz J d2V	 sn exp (i ^c `, n	 1'	 (61)
 - )f

40

0

The mutual intensity function for the scattered field in the observation

plane can now be calculated using (58) and (61)

d	 'A A*
JA(rl,r,,tl,t')) = J dr n J dz m J d 20 

f d 2 -̂m	 sn sm

`	 0	 J	 a`z z
n m

1

• exp Li 2r p n	 rl	 i 2' u m	 r 2	 (6-')
n	 m

where

1



<AsnA * >	 'A (P - v[ l , t l , zn ) A ( r, - vtI't?,zm)>

• <Rn (t i )Rm(t 2 ) exp Iik	 rn(tl) - r m (t 2 )] }> 	 (63)

Whenever the rotational motion is decoupled from the translational motion

(this is not always the case), (63) becomes

	

<AsnAsm> 
_ <AiAi ><Rn (t l )Km(t2 )><eXp Ilk • Irn (t l ) - rm ( t2 )]}>	 (64)

The ensemble average of th- exponential term in (64) is taken over the

initial positions and velocities of the particles and over fluctuating

quantities of the medium that influence particle motion. Equation (64)

can be further simplified if we assume the medium is stationary and

homogeneous, which implies that the initial particle positions are uniformly

distributed

AsnAsm _ <A IM-11 ( t l - t2)ltm(0),

• <exp Ilk	 (rn(t 1 - t,,) - r^ (0) 1 }>	 (65)

The particle trajectory is given ty

fo

t

	E n (t) = rn0 +	 d^ v_ n ( ^ ,rn0' Yn0 )	 (66)

where

	

vn(t}	
dt rn(t)

r
n0	 n

r (0)
-	 -

vn0 = vn(0)

Using (66), the average of the exponential factor in (65) now becomes

23

I



<exp (ik • Ir11(1) - rm (0)))> -

^

exp [ik - ( rnO - rm0 )Z exp It
	 f 0 

df v 11 (C,r noI
vn0 )	 (67)

Because of homogeneity the right-hand side of (67) must be independent of

the initial positions of the n th and 
mth 

particles. This will occur only

if the expectation vanishes for n i m. Under these conditions (62) reduces

to

T

J (rr. t ,t ,z)	 dz d2p 
P(Z) 

<A (p - vt ,t ) A(p - vt ,t )
A -I' -2' 12	

0	
A2z2	 1	 - I	 I	 i	 - 2 2>

• <R 11 (t l - 
t2) 

Rn(0)><exp tik • IrTT(tl - t 2 ) - rn0)>

i68)

where p(z) is the number density of scatterers. We have assumed that the

scattering density iti essentially constant throughout the incident beam

cross section.

further evaluation of (67) follows directly from the work on rough

surface scattering; presented in the previous section. The last two

factors in (67) are independent of p and z and can be removed from the

under integral signs. If in addition we use the representation in (47)

and (48) for the incident field, (68) becomes

JA (r l ,r 2 ,t l .t 2 ,z)	 D(t l ,t 2 ) .)A (r. T )	 (69)

	

D(t i ,t 2 ) - J O dz P^t I - 2z1 Prt 2 - c
	 TL(2	 (70)

0	 `	
J k
	

l z

JA (r, ;)	 CT (;) CR 0 ) CC(T) 41 2	
d ` uAT (u) AT (u - r -	 )

• exp-i 
li 

u • v.	 (71)

where

	

CR0)	 • R 11 ( 1 ) 1, *(0) .

CE (T) - exp {ik_ • Ir n (i) - r nu p
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From Equations (69) through (71) and (50) through (5?) we see that

the spatial statistics associated with particle and rough surface

scattering are identical. The temporal statistics, however, can be

considerably different. For rough surface scattering the temporal

statistics are determined entirely by the source, while for particle

scattering the temporal statistics are strongly influenced by particle

motion.

CE can be simplified if we assume the particle velocity is a Gaussian

random variable. The Gaussian assumption is valid for Brownian motion and

for turbulent flow whict, may be found in clouds and smoke plumes. Using

(65), we have

	

f
dECE(T) = <exp ik	 v0T + ik • 	 Av(^)^>	 (72)

0 	 J

where v 0 is the average particle velocity at,! Av is the fluctuating

velocity component. The first term in (72) represents the Doppler

frequency shift associated with the sL cered field. Because we are

using a direct detection receiver, the Doppler term will have ro effect

on the received signal and can be dropped. Thus, C E may be written in the

form

CE = <e x>

T	 (73)

J

	

ik •	 d& Av(^)
U

Since x is a zero mean Gaussian random variable, we have

CE _	 x, = exp(-2
 

`x

fT	 f 7

	(74)

2` = k 1 
	

dsl 

	

dr,2 CAv (^ 1 9C 2 )

	

0	

0 
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From Equations (69) through (71) and (50) through (52) we see that

the spatial statistics associated with particle and rough surface

scattering are identical. The temporal statistics, however, can be

considerably different. For rough surface scattering the temporal

statistics are determined entirely by the source, while for particle

scattering the temporal statistics are strongly influenced by particle

motion.

CE can be simplified if we assume the particle velocity is a Gaussian

random variable. The Gaussian assumption is valid for Brownian motion and

for turb-ulent flow which may be found in clouds and smoke plumes. using

(65), we have

r

	

C E (T) = <exp ik	 vOT + ik • ( dF Av(F) >	 (72)

JO

where v  is the average particle velocity and Av is the fluctuating

velocity component. The first term in (72) represents the Doppler

frequency shift associated with the scattered field. Because we are

using a direct detection receiver, the Doppler term will have no effect

on the received signal and can be dropped. Thus, CE may be written in the

f orm

CE _ <e x>

T	 (73)

	x = ik •	 dF Av( )
0

Since x is a zero mean Gaussian random variable, we have

i	 \

CE = <ex> = exp^ 2 <x2>I
J	

(74)

7	
T

<x/> = k2 
f T

0 dFl r
0 dF 2 CLv { 1^^)
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where CQv is the velocity correlation function. If the velocity fluctua-

tions are stationarv, ^ x2 > can be written as

<x2 > = -'?k2 T I 7 d£, (1 - ^/T) C Av ( E,)	 (75)

0

It is interesting to evaluate ( 75) for the limiting cases where T is large

compared to the velocity correlation time and where T is small compared to

the velocity correlation time. If we let T v denote the velocity correlation

time, ( 75) becomes

k 2 T 2 <AV 2 >	 T << T

ex2 > =	

rr

	 v	
(76)

2k 21 IO dE CAv	 T >> iv

J0

Notice that the correlation function C E takes on

whenever T <•v
	

The velocity correlation time

Browni:.n motion and in this case C E takes on the

gives rise to the familiar Lorentzian spectrum.

in a turbulent flow, the velocity correlation ti.

the Gaussian form

is negligible for

exponential form which

For particles suspended

ne is usuall y quite long

(-ms) compared to the observation time so that C E is Gaussian..
i

Normally the rotational motion of the particles is negligible compared

to the translational motion. Either the source coherence function C T or CE

dominates the temporal coherence of the scattered field. Consequently, if

we drop C  from ( 71) and use the Gaussian distribution in (53) for AT,

^A finally simplifies to

J	 + vTl2 ^T I

A (r.0 = I C
T 

( 1) C
E 
(1)exp - E 2	 2 I	 (77)
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The analysis in this section must be modified slightly if the scattering

mechanism is resonant absorption and reradiation by molecules. For

resonant scattering, only the incident energy lying within the molecular

absorption band will be scattered. Therefore, the temporal coherence of

the scattered field will depend only on the motion of the molecule. The

effect can be included in an analysis by simply replacing I i C 
T 

in (77)

ti
by I i , the incident intensity lying in the absorption band. If the

total bandwidth of the transmitted signal is narrower than the absorption

band, then I 
i	 i
will be equal to I.

7

r
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V1. POLARIZATION EFFECTS

The analysis in the previous sections considered only one polarization

component of the scattered field. In many cases the scattering process

will partially depolarize the scattered field so that the total field in

the observation plane should be written

A(r,z,t) = Ax (r,z,t) x + A
Y 
(r,z,t) Z
-

where x and X are the unit vectors in the x and y directions. The total

intensity is given by

k
A • A = I x (r,z,t) + Iy (r,z,t)
	

(79)

Each polarization component contributes a speckle intensity pattern.

Depending on the characteristics of the scattering medium, there can be

	

an arbitrary degree of correlation between I
x	 y

and I . Goodman 5 has shown

that by using a suitable coordinate rotation, the partially polarized

field can be decomposed into two uncorrelated polarization components

of different intensities. If we denote these two polarization components

by I 1 and 1 2 their average intensities are given by

<1 1 > =
2
<1T>(1 + P)

<12 >	 2<IT>(1 - P)

	 (80)

where <IT> is the total average intensity and P i.: the degree of polarization.

Because I I and 
1  

are uncorre:lated, the intensity covariance function

,in be written as

C I T = CI1(rl,r,,,tl,t,^) + C IL (r l ,E-,,t l ,t^)	 (81)

28
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The spatial and temporal correlation lengths of I I and 1 2 are identical

and may be calculated using the procedures outlined in Sections IV and V.

Thus C I and C I have the same functional form but differ in magnitude.
'	 1	 2

This implies

CIT	

C11	 C12	

(82)
<IT> 2 	<1I> 2 	 <12>2

Since the analysis in the previous sections was based on completely

polarized fields, it is convenient to write (81) in terms of the

intensity correlation function for complete polarization, i.e., ( = 1.

If we let C I denote the correlation function for complete polarization,

then

C
C 1	IT

<I>2 = <IT,2	 (83)

Using the results in (80) through (83), we find

C 1T (r l ,r 2 ,t 1 ,t 2 ) = 2 (1 + p2 ) C I (r l ,r 2 ,t l ,t 2 )	 (84)

When the field is completely depolarized, p = 0 in (84) and the intensity

variance is decreased by a factor of two. This is expected because in

this case the receiver is actually adding two independent speckle patterns.

The analysis in Section III can now be used to calculate the statistics

of the receiver output by simply replacing the intensity covariance

function by C I and the mean intensity by <I T>. The final results show that

T

the mean value of the detected signal is increased to account for the energy

in the additional polarization component and tilt speckle noise power is mul-

tiplied by 
2 

(1 + pt ) to account for averaging of the speckle patterns in the

two components.

i

i

1

I

29



VII. ATMOSPHERIC TURBULENCE

Atmospheric turbulence affects a propagating laser beam by introducing

random amplitude and phase fluctuations. This results in a reduction of the

spatial and temporal coherence of the beam. Very little work has been

reported on the interaction of turbulence and speckle. 
9,10 

However, some

interesting results were derived in the paper by Lee et al. 
10 

which can be

applied to the satellite-based lidar problem.

Lee et al. assumed that phase perturbation of the laser beam is the

dominant effect due to atmospheric turbulence. In addition they assumed

that the field statistics at the receiver are jointly Gaussian. Utilizing

these assumptions, the intensity covariance function of the field in the

observation plane was derived for collimated and focused beams. The

results are

2	 5/3,
C l (p) = oI exp- p2 - 4(-L-)I(focused)	 (85)

2R	 0
L	 T	 _^

and

2	 p 5/3	 l r l 2	
( kRl. 2

C I (p) = o I exp ' -4( /
	

- 2	 -/ + T	 F`	 (call imated)	 (86)
P O f	 R TJ

where o I is the intensity variance and

	

PO = (0.546C2zk ) -3 5	 (87)

P 0 is the phase correlation length and C2 is the turbulence structure

parameter.

The results in Eqs. (85) through (87) apply to the case where the

initial beam profile at the transmitter is Gaussian and the transmitter,

receiver and tar;;et are all immersed in homogeneous turbulence.

30



Although this does not apply to the geometry of the satellite-based lidar

where only the target may be immersed in turbulence, the results can give

some insight into the satellite problem.

For no turbulence C  = 0 and p 0 = 00 so that (85) and (86) reduce,

as expected, to the cases considered in the previous sections. For strong

turbulence, the intensity correlation length is given by either p 0 or R 

for the focused case and by either p 0 , RT or _L z for the collimated case.

T
In strong turbulence p 0 could be small enough so that it determines the

speckle scale size.

Physically, the effect can be explained by noting that turbulence

reduces the beam coherence as it propagates to the target. Consequently,

the beam spreads out, illuminating an area larger than the diffraction

limited spot size. As the reflected field propagates back to the receiver,

it is again perturbed by the turbulence, further increasing the effective

size of the illuminated target. The end result is a reduction in the

effective speckle scale size which is inversely proportional to the size

of the illuminated target.

Similar effects will occur over the satellite-earth propagation path.

p 0 will be different from the value given in (87) because the turbulence

structure parameter C 2 is a function of altitude and the turbulence is
n

concentrated near the target. For high-altitude targets such as clouds,

turbulence effects may be minimal since C n is significant only near the

ground.

Turbulence will also affect the temporal statistics by reducing the

temporal coherence of the received signal. Because turbulence coherence

times are relatively long (,, ms), these effects are probably negligible

compared to the effects of particle motion and transmitter pulse length.

31
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VIII. SUMMARY

In the previous sections the statistics of the signal and noise at the

output of a satellite-based lidar receiver were evaluated. These statistics

are summarized in Tables I and II for the case where all the system functions

are Gaussian. The mean signal, E(s), may be regarded as the average number

of signal photons detected in a time interval of width 1/B when the receiver

FOV is equal to the transmitter divergence angle 8 T . Similarly, E(nd2 ) is

the average number of background noise photons detected in a time interval

of width 1/13 when the receiver FOV is equal to the diffraction limited

value of a/R. The signal variance, Var(s), and background noise variance,

Var(n), consist of a shot noise component and a speckle noise. The speckle

noise power is a function of the lidar system parameters and the characteris-

tics of the scattering medium.

A useful parameter for measuring the relative quality of lidar data

is the signal-to-noise power ratio (SNR) which is defined as

E(s)2	 88
SNR = Var(s) + Var(n) 	 ( )

Under strong signal conditions the signal speckle noise dominates and the

SNR becomes

2MsM
SNR —

(1+P-)

It is instructive to evaluate (89) for some typical lidar parameters.

I
"	 As an example we will use the system specification for the proposed cloud

climatology experiment (Advanced Applications Flight Experiment, GSFC).

32
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TABLE 1.

ReT 2

E[s(t) + n(t)] = E(s) + E(n d d X

Var [s(t) + n(t)] = E(s ) + 1 (1 + P2) E(s)
2

v	 2
	 M 

s 
M 
T

+ E(ndQ ) (RO T 2 + E(n dD. )2 Re T 4

A )	 NsNT	 X

s(t) - signal voltage at receiver output

n(t) - background noise voltage at receiver output

ndt - equivalent noise voltage for diffraction limited FOV

R - receiver aperture radius

a - transmitter divergence angle and receiver FOV

X - optical wavelength

P - degree of signal polarization. 0 < P < 1

Ms - effective number of spatial correlation cells seen by

receiver aperture (signal)

P1 - effective number of temporal correlation cells seen by

receiver electrical filter (signal)

Ns - effective number of spatial correlation cells seen by

receiver aperture (background noise)

NT - effective number of	 temporal correlation cells seen by

receiver electrical filter (background noise)
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Laser

X - 1.06 um, 0.532 um

t p - 5 ns (FWHM)

T	 _ m
sc

0  - 0.5 mrad
(Half-angle 10 dB
points)

Receiver

R - 9 cm

B- 100 MHz

V - ti 10 km/sec

i

Using the above values in (89) we obtain

	

3.6 x 10 3 	a = 1.06 um

bNR

	

1.45 x 104	A = 0.532 um

These relatively high SNRs are a consequence of large transmitter

divergence angle. They illustrate that speckle noise can be maintained

at acceptable levels by careful choice of the system pavameters.

Although the equations in Tables I and II were derived for the specific

case where all system functions are Gaussian, the general expression for the

signal variance can be written in a similar form

Var(s) = 6E(s) + 2M1 +
1 ) E ` (s)	 (90)

S T

where

d =	 h	 (91)

f_dTI,(T>
_W

1	 f md 2 r1JS (r)l 2 RW(r)
_	 (92)

MS	 (IJS(0;IjMd2rW(r)]2
_M
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1	 1m dTl.)t(T)I2Rp(T)Ith(T)

T 

a 

[^JT(0)IfWdTP2(T) fm dTh(T)J Z
	

(93)

In equations (90) through (93) we have neglected the minor effects caused

by the satellite motion and have used the fact that the mutual intensity

function is separable

JA (r,T) = J
s 

- T (T)
	

(94)

When the receiving aperture diameter is small compared to the spatial

coherence length, MS is approximately one. When the receiving aperture

diameter is large compared to P c , M 
s 

can be approximated by the formula

i

1	 RW(0)	
i J(r) 12

Id r mss_ 2	 (95)h15	 [fd2rW(r)]2	 IJs(0)I

In this case M
s 

is just the ratio of the receiver aperture area to the

effective area of the spatial component of the mutual intensity function.

MT is also approximately one when the bandwidth of h is small compared to

the temporal coherence bandwidth of the received signal. When the bandwidth

of h is large compared to T c , MT can be approximated by the formula

1 _	

-

Rh (3)

'T	 QM
 dT11(T))2

^m. dT I YT (T) I `RP(T)

1^ (0)I`Rp(0)
(95)

The effective temporal coherence function of the signal is ^ TRp . Thus,

MT is just the ratio of the effective area of the receiver impulse response

to the effective area of the temporal coherence function.

As an example, consider the more realistic situation of a photon

counting receiver where the aperture is annular with an obscuration ratio

of y and the counting interval is T seconds in duration. Then if ^s' )T
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J

and P are Gaussian, we have

M = 
nR2(1 — Y2 )	 1 (1 _ Y2) 

E2
	 (97)

s	 2^p2	 2	 p2
c

11
	 T2 1/2
2 + 2

'[	 T
_	 ^	 C

(98)

Exact expressions for M
s 
and "T have been derived for the more

realistic cases such as annular receiving apertures and higher order laser

modes. These results will be included in a s.,bsequent report.

I
if
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